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In this paper limiting distribution functions of field and density fluctuations are
explicitly and rigorously computed for the different phases of the Bose gas.
Several Gaussian and non-Gaussian distribution functions are obtained and the
dependence on boundary conditions is explicitly derived. The model under con-
sideration is the free Bose gas subjected to attractive boundary conditions, such
boundary conditions yield a gap in the spectrum. The presence of a spectral gap
and the method of the coupled thermodynamic limits are the new aspects of
this work, leading to new scaling exponents and new fluctuation distribution
functions.
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1. INTRODUCTION

Normal and critical fluctuations in the ideal Bose gas with Dirichlet or
periodic boundary conditions are explicitly studied at different levels of
rigour in refs. 1–10. Condensation occurs only at dimensions n \ 3. It turns
out that the behaviour of the energy gap of the finite volume spectrum as a
function of the volume is determining for the degree of abnormality of the
fluctuations in the condensate regime. Typical is that the limit spectrum has
no energy gap. The ideal Bose gas with attractive boundary conditions (11, 12)

on the other hand is quite different in nature. Condensation is possible in
all space dimensions, and the spectrum has a finite energy gap in the ther-
modynamic limit. In this paper we analyse the nature of field and density



fluctuations for the Bose gas with attractive boundary conditions. Field
fluctuations are centred observables linear in the Bose-field operators and
density-fluctuations are quadratic in the Bose-fields. We derive rigorously
the exact form of the limiting characteristic functions, i.e., we study the
limits:

lim
LQ.

wL(e itFL), for t ¥ R (1.1)

where L indicates the volume dependence of the temperature states wL
and the fluctuations FL. The thermodynamic limit is computed in various
ways, leading to the different phases of the Bose gas (normal, critical,
and condensed). The difference between the critical and condensed phase
is analysed by a special technique, namely by the interplay between the
scaling of an external gauge breaking field, used to force the gas into an
extremal state, and the speed at which the chemical potential converges.
Using this technique, we obtain detailed information about the behaviour
of the field and density fluctuations in the different phases of the Bose gas.
As turns out, also the fluctuation distributions (1.1) and the scaling expo-
nents in the fluctuation observables are very sensitive on the boundary
conditions and on the way the thermodynamic limit is taken. We prove the
existence of different regions in the space spanned by the scaling param-
eters of external field and chemical potential, in which the fluctuations are
differently distributed and have a different degree of abnormality. The
distribution functions also depend explicitly on the attractivity parameter
of the boundaries. The distributions we obtain, are Gaussian or non-
Gaussian, normal or abnormal depending on different choices of the scaling
parameters.
The main conclusion of this paper can be summarised as follows:

details of the boundary conditions, the strength of the external field, and
the thermodynamic limit have a vast impact not only on the condensation
phenomenon, but also on the distribution functions of field and density
fluctuations. These results show that the analysis of the thermodynamic
limit should be done very carefully and its properties are of utmost impor-
tance for physical observable effects, which are detected at the level of the
states as well as on the fluctuations.
We remark that we take the thermodynamic limits of the states

together with the volume scaling of the fluctuation observables. In this
way, the dependence of the limiting distributions and the volume scaling
exponents on boundary conditions can be made explicit. These limits are
usually taken separately and boundary conditions are reintroduced with
special cut-off functions in the definition of the fluctuation operators. (7)
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This type of calculations was previously applied for the classical Curie–
Weiss Model, (13) but as far as we know not yet for quantum systems. We
obtain explicitly new distribution functions of fluctuations in our Boson
model. In particular new non-Gaussian critical density fluctuations are
derived.

2. THE MODEL

2.1. The One-Dimensional Eigenvalue Problem of the Free

Laplacian

We study the behaviour of a free Bose gas in a n-dimensional cube
with edges of size L, centred around the origin Ln=[−L/2, L/2]n.
The first step in handling this multi-dimensional, many-body system

consists of solving the basic one-dimensional one-body eigenvalue problem
of the free Laplacian on the Hilbert spaceL2(L1):

−
d2k
dx2
(x)=lk (2.1)

with k ¥ C2(L1), the two times continuously differentiable complex func-
tions on L1. We take the units

(
2

2m=1 and consider a family of self-adjoint
extensions of the Laplacian by restricting its domain using the following
boundary conditions

5dk
dx
(x)−sk(x)6

−L
2

=0, (2.2)

5dk
dx
(x)+sk(x)6

L
2

=0 (2.3)

with s ¥ R, a parameter governing the elasticity of the boundaries. Imple-
menting these conditions (2.1)–(2.3), gives the spectrum and eigenfunctions.
This is worked out in detail in ref. 14 we mention here only the results.
It can be proved that there is no continuous spectrum and that there
are infinitely many discrete eigenvalues (En)n ¥N. The eigenfunctions are
given by

kn(x)=cos(`En x) if n is even, (2.4)

kn(x)=sin(`En x) if n is odd (2.5)
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up to normalisation. The spectrum (En)n depends on the size of the box L1,
and on the elasticity parameter s.
About the sign of the elasticity parameter, we distinguish the following

situations:

• Neumann Boundary Conditions (s=0)

The easiest case, is the case of Neumann boundary conditions, i.e.,
s=0. The system of Eqs. (2.1)–(2.3) can be solved exactly and the
spectrum is given by

En=1
np
L
22, -n ¥N (2.6)

The wave function of the lowest energy level is a constant function. Physi-
cally, this means that the particles in the ground level are not attracted, nor
repulsed by the boundaries, i.e., the situation s=0 corresponds to perfect
elastic boundaries.

• Attractive Boundary Conditions (s< 0)

If s < 0, negative eigenvalues are present. Although an exact solution
of the set of Eqs. (2.1)–(2.3) is impossible, graphical techniques can be used
to deduce the following properties of the spectrum. If |s| L < 2 there is only
one negative eigenvalue, and the spectrum satisfies the following useful
spacing properties

E0 < −s2 < 0 < E1 < 1
p

L
22 < E2 < 1

2p
L
22 < E3 < 1

3p
L
22 < E4 < · · · (2.7)

If |s| L > 2, the lowest positive eigenvalue becomes negative and there are
two negative eigenvalues. The spectrum behaves now as

E0 < −s2 < E1 < 0 < 1
p

L
22 < E2 < 1

2p
L
22 < E3 < 1

3p
L
22 < E4 < · · · (2.8)

Since we are especially interested in the thermodynamic limit with fixed
elasticity parameter s, we always assume L |s| > 2. The lowest eigenvalue is
monotonically increasing to −s2, and the second eigenvalue is monotoni-
cally decreasing to −s2, and these processes are exponentially fast:

E0=−s2−O(e−L |s|), E1=−s2+O(e−L |s|)
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It follows from formulas (2.4)–(2.5) that the lowest eigenfunctions are given
by cosh and sinh functions. Physically, this means that the particles in these
orbits have a high probability to be close to the boundaries, or that the
boundaries are attractive.

• Repulsive Boundary Conditions (s> 0)

Using similar techniques as in the case of attractive boundary condi-
tions, it can be deduced that there are no negative eigenvalues if s \ 0, and
that the spectrum behaves as

0 < E0 < 1
p

L
22 < E1 < 1

2p
L
22 < E2 < 1

3p
L
22 < E3 < · · · (2.9)

The norm of the lowest eigenfunction decreases near the boundaries, or the
boundaries are repulsive. If s ‘., we have Dirichlet boundary conditions,
the eigenfunctions vanish at the boundaries and the spectrum can again be
solved exactly, it is given by

En=1
(n+1) p
L
22, -n ¥N (2.10)

These considerations about the one-dimensional case can be extended to
more dimensional systems. Let us now consider the n dimensional Laplacians
on Ln=[−L/2, L/2]n with similar domain restrictions, namely, replace
(2.2)–(2.3) with

“k

“n
(x)=sk(x), x ¥ “Ln

with “

“n the inward normal derivative. The eigenvalues are now denoted
by EL(k), where the dependence of the eigenvalues on the size of the box
is made explicit, k=(k1, k2,..., kn) ¥Nn, and the eigenvalues are given
by

EL(k)=C
n

i=1
Eki (2.11)

with Eki the ki-est eigenvalue of the one-dimensional free Laplacian on L1
(2.6)–(2.10). The eigenfunctions kk(x) ¥ L2(L) are products of their one-
dimensional components (2.4)–(2.5).
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2.2. The Bosonic Many Body System

2.2.1. The Hamiltonian on the Fock Space
In order to be able to describe a gas of bosons in the box L=

[−L/2, L/2]n, we use the standard techniques of second quantisation (15)

and find the Hamiltonian on the Bose–Fock space

HL=C
k
(EL(k)−mL) a†(k) a(k)−Lch(a(0) e− if+a†(0) e if) (2.12)

The index k runs through all vectors in Nn, EL(k) is the energy associated
with the level k (2.11), mL [ infk EL(k) is the chemical potential, which
determines the particle density in the system. The second term in (2.12) is a
external field term, breaking the gauge symmetry. It is added to recover
one of the extremal translation invariant equilibrium states in the thermo-
dynamic limit. This field determines the phase of the condensate, it scales
with the volume with an exponent c, which has to be chosen in the range

− n/2 < c < n/2 (2.13)

If c [ − n/2, its effect is to weak to cause a gauge breaking in the thermo-
dynamic limit, and if c \ n/2, the field is too strong and causes an artificial
gauge breaking, i.e., there is no non-zero critical density. h is a positive
constant. The creation operators a†(k) and their adjoints, the annihilation
operators a(k) are defined by

a(k)=F dx kk(x) a(x) (2.14)

where a†(x) is the creation operator of a Boson at x ¥ Ln and a(x) is the
corresponding annihilation operator. The function kk ¥ L2(Ln) is the
eigenvector by the eigenvalue EL(k) (2.11). The local Hamiltonians (2.12)
are diagonalised in terms of quasi-particles, their creation and annihilation
operators are denoted by b†, resp. b, and the relation between the annihila-
tion operators of the quasi-particles and those of the bare particles is

˛b(0)=a(0)− Lche if

EL(0)−mL
,

b(k)=a(k), -k ¥Nn0{0}

(2.15)

This enables to rewrite the Hamiltonians (2.12) as

HL=C
k
(EL(k)−mL) b†(k) b(k)−

L2ch2

EL(0)−mL
(2.16)
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We see that in terms of the quasi-particles the Hamiltonians HL are essen-
tially the free Hamiltonians plus an unimportant constant term. The volume
dependence of the spectrum and the chemical potential are important in the
remainder of this paper.

2.2.2. Quasi Free Equilibrium States

The finite volume equilibrium states or Gibbs states wL are now easily
established using the expression in terms of the quasi-particles (2.16). The
equilibrium states then coincide with the expression for the equilibrium
states of the free Bose gas without external field. (15) These states are quasi-
free states, the easiest way to characterise them is to use the truncated
correlation functions wL( · · · )T, recursively defined, using the following
expression, for all Ai, i=1, 2,... creation or annihilation operators or
combinations of them:

wL(A1 · · ·An)= C
y ¥Pn

D
J ¥ y
wL(Aj(1),..., Aj(|J|))T, -n ¥N (2.17)

where the sum y ¥Pn runs over all ordered partitions y of a set of n ele-
ments in subsets J={j(1),..., j(|J|)} ¥ y. The truncated functions asso-
ciated with the equilibrium states wL satisfy

wL(bÄ(f))T=0

wL(b†(f1), b†(f2))T=wL(b(f1), b(f2))T=0

wL(b†(f1), b(f2))T=C
k
f̂2(k) f̂1(k)

1
eb(EL(k)−mL)−1

wL(bÄ(f1),..., bÄ(fn))T=0 n \ 3

(2.18)

with f1, f2,... ¥ L2(Ln), and bÄ can be either b or b†. Only the two-point
functions are non-zero, the Fourier transform f(x)W f̂(k), k ¥Nn is
defined by

f̂(k)=Okk | fP=F dx kk(x) f(x) (2.19)

3. CONDENSATION

In this section we prove the existence of different phases in the
thermodynamic limit of the system, i.e., we prove the existence of a
Bose–Einstein condensate—a macroscopic occupation of the lowest energy
level—when the chemical potential mL scales correctly. Here we take the
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thermodynamic limit (L ‘.) with fixed chemical potentials mL and varying
densities (as in ref. 11), rather than with a fixed density and varying
chemical potential (as in refs. 12 and 15). But before discussing this in
detail, let us first prove two lemmata.

Lemma 3.1. Choosing the chemical potentials mL for each volume
Ln=[−L/2, L/2]n equal to

mL=EL(0)−
h

`r0

L−a* (3.1)

where the scaling exponent 0 < ag=n/2− c and r0 ¥ R+, yield a non-zero
occupation of the lowest energy level in the thermodynamic limit, i.e., with
this choice for the series (mL)L we have

lim
LQ.

L− nwL(a†(0) a(0))=r0 (3.2)

and the gauge-invariance of the limiting state is broken, i.e.,

lim
L
L− n/2wL(a(0))=`r0 e

if (3.3)

Proof. The density of particles in the lowest energy level in the
equilibrium state wL for a finite volume Ln (2.18) is given by

r0(L)=L
− nwL(a†(0) a(0))

This expression can be written in terms of the quasi-particles using the
relations (2.15) and the expression for mL (3.1), i.e., use a(0)=b(0)+
Ln/2`r0 e

if to find that

r0(L)=L
− nwL(b†(0) b(0))+L− n/2`r0 (wL(a(0)) e

− if+wL(a†(0)) e if)−r0

The first term is of order O(L− n/2− c), this can be seen using the two-point
functions (2.18) as follows

L− nwL(b†(0) b(0))=L− n
e−b(E(0)−mL)

1− exp−b(E(0)−mL)

=L− n
1−O(L−a*)

1−1+
bh

`r0

L−a*+O(L−2a*)

=O(La*− n)=O(L− n/2− c)
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And by (2.13), this term vanishes in the thermodynamic limit. We use this
observation to establish a bound on the difference between r0(L) and r0

0 [ r0(L)−L
− n/2
`r0 (wL(a(0)) e

− if+wL(a†(0)) e if)+r0 [ O(L
− n/2− c)

Using the Schwarz inequality L− n/2 |wL(a(0))| [`L− nwL(a†(0) a(0))=
`r0(L) the above expression is transformed into

r0(L)−2`r0 `r0(L)+r0 [ O(L
− n/2− c)

(`r0−`r0(L))
2 [ O(L− n/2− c)

and hence,

|`r0−`r0(L)| [ O(L
− n/4− c/2)

|(`r0−`r0(L))(`r0+`r0(L))| [ O(L
− n/4− c/2)

|r0−r0(L)| [ O(L
− n/4− c/2)

Indicating that r0(L) converges to r0 in the thermodynamic limit.
Also the second part of the lemma (3.3) can be proved by means of the

Schwarz inequality,

L− n |wL(b(0))|2 [ L− nwL(b†(0) b(0))=O(L− n/2− c)

Using the relations (2.15) and the expression for the chemical potential, this
yields

lim
LQ.

L− n/2wL(a(0))=`r0 e
if
L (3.4)

The result (3.2) is not yet a complete proof of Bose–Einstein conden-
sation, it should also be proved that the total particle density is finite with
this choice for the chemical potential. Only then one can speak of a
macroscopic fraction of particles condensed in the lowest energy level.
The total density rn(L) in a volume Ln in the equilibrium state wL is

easily derived from the relations (2.15) and the two-point functions (2.18)

rn(L)=L− n C
k
wL(a†(k) a(k))=r0(L)+L

− n C
k ] 0

zLe−bEL(k)

1−zLe−bEL(k)
(3.5)

where zL is the activity or fugacity zL=ebmL, and the sum over k runs over
all k ¥Nn0{0}. We formulate now the well-know result
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Lemma 3.2. Take zL Q z [ limL ebEL(0), then

lim
LQ.

L− n C
k ] 0

zLe−bEL(k)

1−zLe−bEL(k)
=l− nJ(n/2, z) (3.6)

where l=p`b is the thermal wavelength. The function

J(n/2, z)=F
xi > 0
dnx

ze−x
2

1−ze−x
2

is the Jonquière function. This result is valid for any type of boundary
conditions specified in (2.2)–(2.3).

Proof. Based on the spacing properties of the eigenvalues (2.6)–
(2.10) and the convergence of Riemann sums to Riemann integrals.
A proof can be found in ref. 11. L

The Jonquière function J(n/2, z) can be expressed as

J(n/2, z)=C
.

n=1

zn

nn/2
(3.7)

It is an analytic function of z in the cut-plane, the cut being from 1 to .
along the positive real z-axis. In the limiting case zQ 1, it converges to the
Riemann zeta function z(n/2), this is finite for dimensions higher than
three or n \ 3. (16)

Combining the results of the two lemmata we can analyse the different
phases of the Bose gas. If we take the thermodynamic limit such that the
series (mL)L converges to a certain value m, strictly lower than the limit of
the lowest eigenvalue m < mg=limLQ. EL(0), there is no macroscopic
occupation of the lowest energy level (cf. Lemma 3.1), and the total density
converges to a finite value (Lemma 3.2). This situation is called the normal
phase. The critical and condensed phase can be reached if we take a series
(mL)L converging to the maximal value mg, provided that the total density
(3.5) is finite in this limit, i.e., in dimensions n \ 3 if we have s \ 0 bound-
ary conditions (where mg=0), and in al dimensions for s < 0 boundary
conditions (where mg=−ns2 < 0). As said before, we study in this paper
the critical and condensed phase in the thermodynamic limit (L ‘.) taking
series (mL)L of the form

mL=EL(0)−cL−a (3.8)
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where c > 0 some positive constant and a > 0 a scaling exponent. Clearly,
these series (3.8) converge to mg=limL EL(0). Depending on the scaling
exponent a, we have a different phase in the thermodynamic limit.
If the convergence is slow, i.e., if the scaling exponent a is chosen in

the range

0 < a < ag=n/2− c (3.9)

we end up in the critical phase. The total density converges to its critical
value l− nJ(n/2, zg), with zg=ebm*. There is no macroscopic occupation of
the lowest level, since the convergence mL Q mg is too slow (Lemma 3.1).
If the convergence is sufficiently fast, i.e., if the scaling exponent a

(3.8) is large enough,

a=ag=n/2− c (3.10)

i.e., if mL converges to mg as specified in Lemma 3.1, the total density can
reach arbitrary values above the critical density l− nJ(n/2, zg). There
is a non-zero density of the condensate r0. This condensate density is
determined by the constants c (3.8) and h of the external field (2.12), i.e.,
r0=h

2/c2, cf. Eq. (3.1).
The situation with mL=EL−cL−a with a > n/2− c, is not physically

meaningful since we end up in a situation where the density of the conden-
sate r0(L) diverges in the thermodynamic limit.
Let us summarise this in the following.

Theorem 3.3 (Phases of the Free Bose Gas). Fix a temperature b,
the thermodynamic limit of the b-equilibrium states wL, i.e., the limit
(L ‘.) with (mL Q m), exists if the total density (3.5) converges to a finite
value r, and

• r < l− nJ(n/2, zg), if mL Q m < mg=limL EL(0) (Normal Phase),

• r=l− nJ(n/2, zg), if mL=EL(0)−cL−a with c > 0 and 0 < a <
n/2− c, and if J(n/2, z) converges (Critical Phase),

• r=r0+l
− nJ(n/2, zg), if mL=EL(0)−

h
`r0
L−a* with ag=n/2− c,

provided that J(n/2, z) converges (Condensed Phase).

For attractive boundary conditions, the condensation phenomenon
takes place in any dimension, but due to the special form of the wavefunc-
tions of the lowest energy levels, the condensate is localised near the
boundaries, and the condensation is a pure surface effect. For s \ 0, the
condensation is a bulk phenomenon and only takes place in dimensions

Fluctuations in the Bose Gas 133



higher than three (n \ 3). More detailed discussions of these different types
of condensation can be found in ref. 11, 12, and 15.
It is clear that the strength parameter of the external field c plays an

important role in the condensed and critical phases. If c is small, the a has
to be larger, or mL has to converge faster to zero, in order to have conden-
sation; for larger values of c, condensation is already present at a slower
convergence rate for mL. A value c=n/2 provokes an artificial gauge
breaking, and there is always condensation at any density. If c [ − n/2, the
nature of the phase transition changes, the condensate is no longer of a
well defined phase, and we do not find a single extremal state in the ther-
modynamic limit, but a mixture. Hence clustering is absent and we can no
longer analyse the fluctuations. The interplay between c and a plays also its
role below where we analyse the field and density fluctuations.

4. FIELD FLUCTUATIONS

In this section we study the scaling behaviour of field fluctuations, or
fluctuations of operators of the form

A+k=
1

`2
(a(k)+a†(k)); (4.1)

A−k=
i

`2
(a(k)−a†(k)) (4.2)

with k ¥Nn, different modes. The local k-mode field fluctuations are
defined by

FL, d(A
±
k )=L

−d(A ±k −wL(A
±
k )) (4.3)

d is the scaling exponent and should be chosen such that the limiting
characteristic function

j(Fd(A
±
E )): tW j(Fd(A

±
E ))(t) — lim

LQ.

wL(exp(itFL, d(A
±
kL ))) (4.4)

is non-trivial. (7) The limits we consider here are limits of series of local
fluctuations FL, d(A

±
kL ), where the vectors kL ¥Nn are chosen such that we

can associate with the series (kL)L a series of eigenvalues (EL(kL))L, con-
verging to a certain value E ¥ {− ns2} 2 [−(n−1) s2,.) in the limit
L ‘.. The scaling exponent d depends on E and on the phase of the Bose
gas.
In the case of field fluctuations, the limiting characteristic function can

explicitly be obtained, due to the quasi-free character of the states wL.
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Lemma 4.1. Field fluctuations are Gaussian

j(Fd(A
±
E ))(t)= lim

LQ.

exp 1 −t
2

4
L−2d(1+2wL(b†(kL) b(kL)))2 (4.5)

Proof. The characteristic functions (4.4) can be written in the
following expansion (15)

w(exp(itQ))=exp C
.

n=1

(i t)n

n!
wL(Q, Q,..., Qz

n times

)T (4.6)

with wL(Q, Q,..., Q)T, the n-point truncated correlation functions (2.17). In
the case of field fluctuations, i.e., if we substitute FL, d(A

±
k ) for Q in (4.6),

due to the properties of the equilibrium states wL (2.18), only the second
order term in this expansion is different from zero. This term can be
rewritten in terms of the quasi-particles as

wL(FL, d(A
±
k ), FL, d(A

±
k ))T=wL(FL, d(A

±
k )
2)−wL(FL, d(A

±
k ))

2

=
L−2d

2
(1+2wL(b†(kL) b(kL)))

and this yield the explicit form of the characteristic function (4.5). L

In spite of the fact that field fluctuations are Gaussian, they can be
abnormal, in the sense that there has to be a non-zero scaling exponent d,
in order to have non-trivial fluctuations.

Theorem 4.2 (Field Fluctuations). The limiting characteristic
functions of the k-mode field fluctuations

j(F(A ±E )(t)= lim
LQ.

wL(exp(i tFL, d(A
±
kL ))) (4.7)

with EL(kL)Q E, tend to non-trivial distributions if

• d=0 in the normal phase (mL Q m < mg=−ns2)

j(F(A ±E ))(t)=exp 1−
t2

4
coth(b/2(E−m))2 (4.8)

• d=0 in the critical and condensed phase if E ] − ns2

j(F(A ±E ))(t)=exp 1−
t2

4
coth(b/2(E+ns2)2 (4.9)

Fluctuations in the Bose Gas 135



• d=a/2 in the critical and condensed phase (mL=EL(0)−cL−a), for
all a: 0 < a [ n/2− c and if EL(kL)Q E=−ns2

j(F(A ±−ns2))(t)=exp 1−
t2

2
1
bc
2 (4.10)

In the condensed phase, i.e., if a=n/2− c this expression can also be
expressed in function of the condensation density r0, i.e.,

j(F(A ±−ns2))(t)=exp 1−
t2

2
`r0

bh
2 (4.11)

Proof. The two-point function appearing in the expression for the
distribution of field fluctuations (4.5) is given by

wL(b†(kL) b(kL))=
exp(−b(EL(kL)−mL))
1− exp(−b(EL(kL)−mL))

(4.12)

This function converges in the limit (L ‘.) if

lim
LQ.

|EL(kL)−mL | > 0

This situation occurs in the normal phase for all EL(kL)Q E, but in the cri-
tical and condensed phase only for EL(kL)Q E ] − ns2. It yields normal
fluctuations, i.e., d=0, and the explicit form of the distributions (4.8)
and (4.9).
Let us now consider the case E=−ns2 in the critical or condensed

phase. IfE=−ns2, the vectors kL should be in {0, 1}n for sufficiently large L,
only in that case there is convergence EL(kL)Q − ns2, and this convergence
is exponentially fast. In the critical phase mL also converges to − ns2 (3.8),
and the expectation value appearing in expression (4.12) diverges. An extra
scaling L−d is necessary in order to obtain finite variances. The highest
order term of (4.12) behaves as

2L−2dwL(b†(kL) b(kL))=2L−2d
e−b(EL(kL)−mL)

1− e−b(EL(kL)−mL)

=2L−2d
1−bcL−a+O(L−2a)+· · ·
1−1+bcL−a+O(L−2a)+· · ·

=2L−2d 1 1
bc
La+O(1)+· · · 2
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Hence, a scaling d=a/2 is needed in order to avoid divergences or trivial
distributions. The distribution then converges to

j(F(A ±−ns2))(t)=exp 1 −
t2

2
1
bc
2

In the condensed phase, i.e., if a=n/2− c, we can replace c by an expres-
sion depending on the condensate density and the external field h: 1

bc=
`r0

bh
(4.11). L

5. DENSITY FLUCTUATIONS

The local density fluctuations FL, d(N0) are defined by

FL, d(N0)=L− n/2−d F
L

dx a†(x) a(x)−wL(a†(x) a(x)) (5.1)

or equivalently

FL, d(N0)=L− n/2−d C
p ¥N

n

a†(p) a(p)−wL(a†(p) a(p)) (5.2)

it turns out these density fluctuations can be divergent in the critical and
condensed phases, and suitable non-zero scaling exponents d have to be
added.
Instead of using such an extra scaling factor, one can introduce

modulated fluctuations. Mostly one chooses a cosine function as modula-
tion function, and one introduces the so called k-mode fluctuations (9, 13) by:

Fk(A)=L− n/2 F
L

dx(yx(A)−wL(yx(A))) cos(kx)

Inspired by ref. 9, where the Goldstone phenomenon was studied in inter-
acting Bose gases, we consider here k-mode density fluctuations given by

FL, d(Nk)=L− n/2−d
1
2 C
p
(a†(p) a(p+k)+a†(p+k) a(p)

−wL(a†(p) a(p+k)+a†(p+k) a(p))) (5.3)

These observables can be considered as exchange correlations between par-
ticles of momentum differences k, but also as modulated density fluctua-
tions. In the case of periodic boundary conditions, which was considered in
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ref. 9, this form of modulation coincides with the k-mode cosine-modulated
fluctuations. Here, in the case of elastic boundary conditions, these fluc-
tuations (5.3) correspond to a more complicated form of modulation

FL, d(Nk)=L− n/2−d F
L

dx F
L

dy a†(x) a(y) 1C
p
kp(x) kp+k(y)/22+h.c.

The modulation function ;p · · · is here no longer of a delta-function type,
i.e., d(x−y) cos(kx), but it is a more smeared out function.
These fluctuations (5.1)–(5.3) have no longer a priori a Gaussian distri-

bution. Nevertheless, we are still able to compute rigorously and explicitly
their distribution functions as a function of temperature, density, external
field strength and boundary conditions.
For the sake of compactness of the paper, we will not discuss in this

section the case where k depends on the volume k=kL (as in Theorem 4.2),
but take k constant. The more general situation however is easily obtained
from this case.

5.1. Quasi-Particles Density Fluctuations

The distributions of the density fluctuations of the bare particles is
related to the distributions of similar density fluctuations in terms of the
quasi-particles (2.15). The first step in calculating the distribution of
density fluctuations consists in finding the distributions of the density
fluctuations of the quasi-particles,

FL, d(N
−

k)=L
− n/2−d 1

2 C
p
(b†(p) b(p+k)+b†(p+k) b(p)

−wL(b†(p) b(p+k)+b†(p+k) b(p))) (5.4)

where the accent in N −k is added to make a distinction with the particle
density of the bare particles.

5.1.1. k ] 0 Quasi-Particle Density Fluctuation

First we consider the k ] 0 density fluctuations. In this case, the
expectation value appearing in (5.4) is zero and may be left out. If we want
to calculate the characteristic function

j(t): tW lim
LQ.

wL(e itFL, d(NŒk))
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we can use expansion (4.6) in the n-point truncated correlation functions:

wL(F(N
−

k),..., F(N
−

k))T

These n-point truncated functions can be calculated, but first we need
to know something about the expectation values of the powers of F(Nk).

The Expectation Value of Powers of the Quasi Particle Density
Fluctuations. Consider the function wL(F(N

−

k)
n) with F(N −k) as in (5.4).

This function can be expanded in 2n functions, if every factor F(N −k) is
splitted into two parts

1L− n/2/2 C
p
b†(p) b(p+k)2+1L− n/2/2 C

p
b†(p+k) b(p)2 (5.5)

Those 2n terms are all of the form

L−nn/2−nd
1
2n

C
p1,..., pn

wL(b†(p1) b(p1+k) · · · b†(pn+k) b(pn)) (5.6)

where n factors appear being either b†(pi) b(pi+k) or b†(pi+k) b(pi),
-i=1, 2,..., n. Such a term (5.6) can be represented as a configuration of n
symbols on a circle, e.g., see (Fig. 1) with n=6.
We draw a circle and add n points, choose a starting point and count

the different sites clockwise. To every site 1, 2, 3,..., n we add a symbol
being either p or × . We draw a ‘‘p’’ at site i, for a factor b†(pi) b(pi+k),

Fig. 1. A possible configuration with 6 sites and 3 cycles.
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and a ‘‘× ’’ for a factor b†(pi+k) b(pi). In the example (Fig. 1), we
represent the monome

C
p1,..., p6

wL(b†(p1+k) b(p1) b†(p2+k) b(p2) b†(p3) b(p3+k)

×b†(p4) b(p4+k) b†(p5+k) b(p5) b†(p6) b(p6+k)) (5.7)

Using the quasi-freeness of the states (2.18), these functions (5.6) can be
expressed as a sum of terms consisting of n products of 2-point functions
only. All partitions into ordered pairs appear once in this expansion.
A possible term in this expansion of products of two-point functions is now
represented by a directed graph on this circle, connecting the different sites
with each other, obeying the rule that on every site there must start an
arrow and must end one. Every arrow corresponds to a two-point function.
Such a two-point function is constructed by combining the creation opera-
tor from the site where the arrow starts with the annihilation operator from
the end-point. The order of the operators is defined by the order of the
sites 1, 2,..., n. A loop is also possible, then we combine the creation
operator with the annihilation operator from the same site, e.g., in the
above example (Fig. 1), there is a loop at site 6, this yields a factor
wL(b†(p6) b(p6+k)). Since k ] 0, such loop-factors are zero by gauge-
invariance of the states wL (2.18). A graph on a circle consists of separated
connected graphs on subsets or cycles, e.g., the graph in (Fig. 1) consists of
a two-point cycle, a three-point cycle and a one-point cycle or loop. The
total term represented in (Fig. 1) reads

C
p1,..., p6

wL(b†(p1+k) b(p5)) wL(b(p3+k) b†(p5+k)) wL(b(p1) b†(p3))

×wL(b†(p2+k) b(p4+k)) wL(b(p2) b†(p4)) wL(b†(p6) b(p6+k))
(5.8)

A number of useful properties can immediately be deduced from this
representation:

• Every (non-zero) cycle has only one summation index.

Every two-point function yields a relation between the summation
indices of the creation and annihilation operator. All types of two point
functions appearing in these expressions (5.8) are zero unless the indices of
the creation and the annihilation operators are the same. This yields a
linear relation between the summation indices p1, p2,... in the cycle, and
hence only one summation is free.

140 Lauwers and Verbeure



• A cycle containing not the same numbers ‘‘p’’ as ‘‘× ’’ are zero,
consequently cycles over an odd number of sites are always zero.
The sum of the indices of the creation operators minus the sum of the

indices of the annihilation operators in a cycle must be zero, otherwise
there will always be a two-point function where the indices of the two
operators are different, and such a factor is zero. In cycles where there are
not as many symbols ‘‘p’’ as ‘‘× ,’’ this sum is always different from zero.

Truncated Functions. The following step in the calculation of the
characteristic function, consists in the calculation of the n-point truncated
correlation function itself.

Lemma 5.1. All odd truncated functions vanish.

wL(F(NŒk),..., F(NŒk)z
2n+1 factors

)T=0, -n ¥N

Proof. First note that the one-point function vanishes,

wL(F(N
−

k))T=L
− n/2/2 C

p
wL(b†(p) b(p+k))+wL(b†(p+k) b(p))=0

due to the gauge invariance of the states wL.
Consider now the 2n+1-point truncated function, and suppose that all

m-point truncated functions where m is an odd number less than 2n+1,
vanish. Using the definition of the truncated functions (2.17), the 2n+1-
point truncated function is written as

wL(F(N
−

k), F(N
−

k),..., F(N
−

k))T

=wL(F(N
−

k)
2n+1)− C

y ¥PŒ

D
J ¥ y
wL(F(N

−

k),..., F(N
−

k))T (5.9)

where the sum in the second term on the rhs runs through all partitions
y ¥PŒ in two or more subsets J of a string of 2n+1 elements. Each term in
this sum on the rhs contains at least one factor with a truncated function
over an odd number of points m < 2n+1, and such a factor is zero by
induction hypothesis.
Also the first term wL(F(N

−

k)
2n+1) vanishes. Expand this term using

the definition of F(N −k) (5.4), as in (5.6). All possible configurations in
terms of two-point functions (Fig. 1), contain at least one cycle with not as
many symbols ‘‘p’’ or ‘‘× ,’’ because the total number of symbols is odd,
and such cycles vanish. Hence there are no configurations which are non-
zero and wL(F(N

−

k)
2n+1)=0. Hence, also the 2n+1-point truncated func-

tion vanishes, and by induction, all odd truncated functions vanish. L
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Lemma 5.2. All even truncated functions can be written as the sum
over all configurations with two-point functions (as in Fig. 1) containing
only one cycle connecting all sites.

Proof. Consider first the 2-point truncated function

wL(F(N
−

k), F(N
−

k))T=wL(F(N
−

k)
2)−wL(F(N

−

k)) wL(F(N
−

k))

=wL(F(N
−

k)
2)

=L− n 14 C
p1, p2

wL(b(p1) b†(p2)) wL(b†(p1+k) b(p2+k))

+wL(b(p1+k) b†(p2+k)) wL(b†(p1) b(p2)) (5.10)

Using the diagrammatic representation of these functions (as in Fig. 1), we
see that wL(F(N

−

k), F(N
−

k))T can be written as the sum over all (non-zero)
diagrams with two sites containing only one cycle, cf. (Fig. 2).
Consider now the 2n-point truncated function

wL(F(N
−

k),..., F(N
−

k))T=wL(F(N
−

k)
2n)− C

y ¥PŒ

D
J ¥ y
wL(F(N

−

k),..., F(N
−

k))T
(5.11)

and suppose that all 2m-point functions, with m < n are of the prescribed
form. Furthermore all odd truncated functions vanish (Lemma 5.1), hence
the sum in the second term is a sum over products of diagrams with one
cycle and an even number of sites.
The first term wL(F(N

−

k)
2n) can be rewritten in terms of diagrams (as

in Fig. 1). We use the fact that diagrams containing several cycles can be
written as the product of diagrams over less points containing only one
cycle, because all cycles are independent. Take a certain partition y ¥P of
the 2n sites into subsets of |J1 |, |J2 |,..., |Jymax | sites, and consider now all
possible arrow-diagrams where there is for every subset J1, J2,... ¥ y just
one cycle, connecting all the points in that subset. By distributivity we can
rewrite this as the product over all subsets Ji of the sum of all possible
configurations with one cycle on a diagram with |Ji | elements.

Fig. 2. The non-zero diagrams for wL(F(N
−

k)
2).
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Since all cycles on diagrams with an odd number of points vanish, we
only have to deal with the partitions y in subsets all containing an even
number of points. In the case of a partition y in two or more subsets, we
can apply the induction hypothesis, i.e., suppose that the sum over all pos-
sible diagrams with 2m < 2n points with only one cycle is equal to the
2m-point truncated function. This yields that the term corresponding to the
partition y can be written as the following product

D
ji ¥ y
wL(F(N

−

k),..., F(N
−

k))T (5.12)

Hence, the 2n-point truncated functions (5.11) can be written as

wL(F(N
−

k),..., F(N
−

k))T

= C
diagrams with one 2n-cycle

+C
PŒ

D wL(F(N −k),..., F(N −k))T

−C
PŒ

D wL(F(N −k),..., F(N −k))T

= C
diagrams with one 2n-cycle

Also the 2n-point truncated function is of the prescribed form and by
induction, this is valid for all even truncated functions. L

Now we are ready to calculate the distributions of the quasi-particle
density fluctuations.

Theorem 5.3. The k ] 0 quasi-particle density fluctuations are

• Gaussian and normal

j(F(N −k))(t)=exp(−t
2z(z)/4) (5.13)

with

z(z)=l− n F dx 11 ze
−x2

1−ze−x
2
22+ ze−x

2

1−ze−x
2
2 , z=ebm, l=p`b

(5.14)

in the normal phase, and in the critical and condensed phases (mL=
EL(0)−cL−a, cf. (3.8)) for k ¨ {0, 1}n, or for k ¥ {0, 1}n0{0} and a < n/2.
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• Non-Gaussian and normal

j(F(N −k))(t)=e
−t2z(z)/4 1 1

1+( t2bc)
2
2s(k) (5.15)

with z(zg) as in (5.14), zg=e−bns
2
, and s(k)=2(n−k

2), for k ¥ {0, 1}n0{0}
and a=n/2.

• Non-Gaussian and abnormal (d=a− n/2)

j(F(N −k))(t)=1
1

1+( t2bc)
2
2s(k) (5.16)

with s(k)=2(n−k
2), for k ¥ {0, 1}n0{0} and a > n/2.

Proof. Applying the expansion (4.6) to the functions F(N −k) yields
the following expression for the characteristic function

wL(e itF(NŒk))=exp C
n \ 1

(i t)n

n!
wL(F(N

−

k),..., F(N
−

k))T (5.17)

where wL(F(N
−

k),..., F(N
−

k))T are the n-point truncated functions.

Normal Phase. Lemmas 5.1 and 5.2 about the truncated functions
learn that all odd truncated functions vanish, and that all 2n-point trun-
cated functions, 2n > 2 are vanishing, this last fact is easily seen as follows.
From Lemma 5.2, the 2n-point truncated functions could be written as a
the sum over all possible cycles with 2n points. Such a terms are of the
form

L−nn

4n
C
p
wL(b†(p) b(p)) wL(b(p+2k) b†(p+2k)) · · · (5.18)

with only one summation index, and 2n two-point functions, wL(b(p+jk)
b†(p+jk)), j=0, 1, 2,... or with the operators in different order. All these
factors are bounded in the normal phase, and using the techniques of
Lemma 3.2 it is easy to see that the sum

L− n C
p
wL(b†(p) b(p)) wL(b(p+k) b†(p+k)) · · ·wL(b†(p+3k) b(p+3k))

converges to a finite integral. But we have an extra scaling factor L−(n−1)/n,
whichmakes the2n-point truncated functions,2n > 2behave likeO(L−(n−1)/n).
Hence, the only extensive term is the contribution of the two-point

functions (5.10):
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lim
LQ.

wL(F(N
−

k), F(N
−

k))T

= lim
LQ.

L− n
l− n

4
C
p1, p2

wL(b(p1) b†(p2)) wL(b†(p1+k) b(p2+k))

+wL(b(p1+k) b†(p2+k)) wL(b†(p1) b(p2))

=
1
2
F dx 11 ze

−x2

1−ze−x
2
22+ ze−x

2

1−ze−x
2
2

=z(z)/2 (5.19)

with 0 < z < e−bns
2
for the normal phase and l=p`b, the thermal wave-

length.
One can check that there exists a constant M(z) > 0 such that the

2n-point truncated functions, are bounded by

2n!
n! n!

(2n−1)! L− n(n−1)M(z)n (5.20)

and

lim
LQ.

C
n \ 2

(it)2n

2n!
2n!
n! n!

(2n−1)! L− n(n−1)M(z)n

converges to zero as O(L− n). Hence, the error series can be controlled and
the distribution function converges to (5.13).

Critical and Condensed Phase. In these phases, the contributions
of terms like wL(b(q) b†(q)) diverge if q ¥ {0, 1}n. The rate of divergence
depends on the scaling exponent (3.8), we have

wL(b†(q) b(q))=
1
bc
La+O(1)=wL(b(q) b†(q)), -q ¥ {0, 1}n (5.21)

A 2n-point truncated function consists of terms of the form (5.18),
with one summation index p. Only the first 2n terms in this sum over p ¥N,
with p ¥ {0, 1}n, in such a term contain diverging factors (5.21).
If k ¨ {0, 1}n, the only diverging factors are of the form wL(b(p) b†(p))

or wL(b†(p) b(p)), p ¥ {0, 1}n. All factors with indices p+jk, with j=
1, 2,... and arbitrary p, are finite.
A term represented by a cycle which connects alternating symbols ×

and p, contains n factors of the form wL(b(p) b†(p)) or wL(b†(p) b(p))
and n factors of the form wL(b(p+k) b†(p+k)) or wL(b†(p+k) b(p+k)).
In cycles with arrows connecting two symbols of the same kind × or p,
some of these factors are replaced by factors wL(b(p+jk) b†(p+jk)) with

Fluctuations in the Bose Gas 145



j=2, 3,... depending on the number and the order of such an arrows.
Hence, the maximal number of diverging factors in a term of the 2n-point
truncated function is n if k ¨ {0, 1}n, and the terms containing the largest
diverging factors are of order

O(L−nn+na)

Since 0 < a [ n/2− c < n, these terms are vanishing, and the k-mode quasi-
particle density fluctuations, with k ¨ {0, 1}n are normal (no extra scaling
exponent d ] 0 needed) and Gaussian as in the normal phase

lim
LQ.

wL(e i tF(NŒk))=e−t
2
z(z
*
)/4

with z(zg) as in (5.14) and zg=e−bns
2
.

The situation is different for the k-mode fluctuations, with k ¥ {0, 1}n.
Now not only factors with index p are diverging but there are also diverg-
ing factors with index p+k ¥ {0, 1}n. The factors with indices p+jk, with
j=2, 3, 4,... which appear in cycles where arrows between symbols of the
same type are present, are bounded since jk ¥ {0, j}n, and thus p+
jk ¨ {0, 1}n. The diagrams with the highest number of diverging factors are
those where alternating symbols × and p are connected. They have then 2n
diverging factors of order O(La). Such terms become extensive if a \ n/2.
For a 2n-point truncated function there are (2n)!/(n!)2 diagrams with an
equal number of both symbols. For such diagrams there are n! (n−1)!
possible cycles which connect all points alternating the two types of
symbols. Hence there are (2n)!/n terms of leading order. In leading order
they are all equal to

L−nn−2nd

4n
C

p, p+k ¥ {0, 1}n
1 1
bc
La2

2n

=s(k)1 1
2bc
22n

The sum ;p, p+k ¥ {0, 1}n yields only a numerical factor s(k)=2(n−k
2).

Hence, inserting this in expression (5.17) yields

lim
LQ.

wL(e itF(NŒk))= lim
LQ.

exp 1 C
n \ 1

(it)n

n!
wL(F(N

−

k),..., F(N
−

k))T 2

=exp 1s(k) C
n \ 1

(it)2n

2n!
2n!
n
1 1
2bc
22n2

=exp 1s(k) C
n \ 1

1
n
1 −t2
(2bc)2
2n2=1 1

1+( t2bc)
2
2s(k)
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In the case a=n/2, these terms are extensive as well as the extensive term
from the case a < n/2 and the distribution is equal to the product of the
distribution in the two other cases.

lim
LQ.

wL(e itF(NŒk))=1
1

1+( t2bc)
2
2s(k) e−t2z(z*)/4

with z(zg) as in (5.14). This distribution is normal (d=0), but non-Gaussian.
Finally, remark that also in the critical and condensed phases the series
over the subdominant terms can be controlled using similar arguments as
in (5.20). L

5.1.2. Unmodulated Quasi-Particle Density Fluctuations

The situation is similar for k=0 quasi-particle fluctuations:

F(N −0)=L
− n/2 C

p ¥N
n

b†(p) b(p)−wL(b†(p) b(p)) (5.22)

In order to calculate the characteristic functions, we take again the
expansion in terms of truncated correlation functions (4.6),

e itF(NŒ0)=exp C
.

n=1

(i t)n

n!
wL(F(N

−

0),..., F(N
−

0))T

and we look for an expression of the n-point correlation functions.
First we need to understand the form of the expectation value of

powers of F(N −0). By the quasi-freeness and the gauge invariance of the
states, the monome wL(F(N

−

0)
n) can be decomposed into a sum over all

pair-partitions, where every pair-partition corresponds to a term consisting
of a product of two-point functions. Just as for the k-mode fluctuations, we
can visualise this in a diagrammatic representation of wL(F(N

−

0)
n), (e.g.,

Fig. 3).
Again we draw n sites on a circle, and label them from 1 to n. Each

site corresponds to a factor L− n/2;pi b
†(pi) b(pi)−wL(b†(pi) b(pi)). Each

pair-partition can be represented by a directed graph (Fig. 3). In every site
starts an arrow and ends an arrow, every arrow represents a two-point
function, this two-point function is constructed in the following way, take
the creation operator from the starting point of the arrow, and combine
it with the annihilation operator from the endpoint, the order of the
operators in the two-point function is imposed by the order of the
sites, the operator with the lowest site number comes first. Loops are now
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Fig. 3. A 6-point diagram with a directed graph consisting of a 2-point cycle and a 4-point
cycle.

not permitted, the effect of the subtractions of the expectation values
wL(b†(pi) b(pi)) in the definition of the fluctuation observables (5.22), lies
just in the cancellation of the terms or graphs containing loops, i.e., factors
wL(b†(pi) b(pi)). Every graph consists of a bunch of independent con-
nected subsets or cycles. Since every two-point function is only different
from zero if the indices of both operators are equal, all summation indices
of the points in a cycle are equal, and there is only one effective summation
index for every cycle.

Lemma 5.4. n-point truncated functions wL(F(N
−

0),..., F(N
−

0))T, with
n > 1, can be written as the sum over all diagrams over n points with one
cycle connecting all n points in the diagram.

First note that the one-point truncated function is zero,

wL(F(N
−

0))T=wL(F(N
−

0))=0

The two point function reads

wL(F(N
−

0), F(N
−

0))T=wL(F(N
−

0)
2)−wL(F(N

−

0)) wL(F(N
−

0))

=L− n C
p1, p2

wL(b†(p1) b(p2)) wL(b(p1) b†(p2))

This is the term represented by the only diagram over two points with one
cycle connecting both points.
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The rest of the proof uses induction. Consider the n-point truncated
function and suppose that all m-point truncated functions, with m < n are
of the prescribed form. The n-point truncated function is defined as

wL(F(N
−

0),..., F(N
−

0))T=wL(F(N
−

0)
n)− C

y ¥PŒ

D
Ji ¥ y
wL(F(N

−

0),..., F(N
−

0))T
(5.23)

where the sum over PŒ is over all partitions y into two or more ordered
subsets J1, J2,... ¥ y. Since the one-point truncated function is zero, parti-
tions containing singletons may also be omitted. The first term is the
expectation value of the nth power of F(N −0). It can be written in terms
of diagrams. Using similar arguments as in Lemma 5.2 and the induction
hypothesis, one can write it as

wL(F(N
−

0)
n)= C

n-point diagrams with one cycle
+ C
y ¥PŒ

D
Ji ¥ y
wL(F(N

−

0),..., F(N
−

0))T

as the second term in this equation is equal to the second term in (5.23), we
conclude that

wL(F(N
−

0),..., F(N
−

0))T= C
n-point diagrams with one cycle

· · ·

or the n-point truncated function can also be written as a sum over all
possible diagrams with n-points connected through one cycle, and by
induction all truncated functions are of this form. L

Theorem 5.5. k=0 quasi-particle density fluctuations (5.22) are

• Gaussian and normal

j(F(N −0))(t)=exp(−t
2z(z)/2) (5.24)

with z(z) as in (5.14), in the normal phase and in the critical or condensed
phases (with mL=EL(0)−cL−a) if a < n/2;

• Non-Gaussian and normal

j(F(N −0))(t)=e
−t2z(z

*
)/2 1 e− it/bc
1− it/bc
22
n

(5.25)

with z(zg) as in (5.14), in the critical phase if a=n/2;
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• Non-Gaussian and abnormal (d=a− n/2)

j(F(N −0))(t)=1
e− it/bc

1− it/bc
22
n

(5.26)

in the critical or condensed phase if a > n/2.

Proof. In Lemma 5.4 we learned that an n-point truncated function
can be written as a sum of terms of the following form

L−nn/2 C
p ¥N

n

wL(b†(p) b(p)) wL(b(p) b†(p)) · · ·

where the n factors are either b†(p) b(p) or b†(p) b(p). In total, there are
(n−1)! different cycles connecting all points in a diagram of n points,
hence there are (n−1)! terms of this form. We can analyse them as follows

L−nn/2 C
p ¥ {0, 1}n

wL(b†(p) b(p)) · · ·+L−nn/2 C
p ¨ {0, 1}n

wL(b†(p) b(p)) · · ·
(5.27)

In the normal phase all factors are bounded, hence since the first term is a
finite sum over bounded terms, due to the scaling factor L−nn/2, it vanishes
in the thermodynamic limit. Using the results of Lemma 3.2,

lim
LQ.

L− n C
p ¨ {0, 1}n

wL(b†(p) b(p))=l− n F dx
ze−x

2

1−ze−x
2

and since all two-point factors are bounded, also the second term in (5.27)
is finite. The extra scaling factors L−nn/2 make that these terms vanish if
n > 2. Hence only the two-point truncated function contains an extensive
term, it reads

lim
LQ.

L− n C
p ¨ {0, 1}n

wL(b†(p) b(p)) wL(b(p) b†(p))

=l− n F dx 11 ze
−x2

1−ze−x
2
22+ ze−x

2

1−ze−x
2
2

=z(z)

with z(z) as in (5.14).
In the critical and condensed phases, the analysis of this second part of

(5.27) is analogous, but now, the first part contains diverging factors, cf.
(5.21). If a < n/2 the scaling exponent L−nn/2 dominates and the first term
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of (5.27) vanishes. The situation is thus similar to the normal phase, we
have normal fluctuations (d=0) and the only dominating term is the
two-point truncated function,

lim
LQ.

L−n C
p ¨ {0, 1}n

wL(b†(p) b(p)) wL(b(p) b†(p))=z(zg), with zg=e−bns
2
< 1

If a > n/2, the first part in (5.27) becomes dominant, the fluctuations
become abnormal and non-Gaussian, a scaling factor (d=n/2−a) is nec-
essary in order to obtain non-trivial distributions. Using the relations
(5.21), the expression for (5.27) is in leading order equal to

L−nn/2−nd C
p ¥ {0, 1}n

wL(b†(p) b(p)) · · ·=2n
1
(bc)n

+O(Ln−na)

This yields the following expression for the characteristic function of
F(N −0)

exp C
.

n=1

(it)n

n!
wL(F(N

−

0),..., F(N
−

0))T=exp C
.

n=2

(it)n

n!
(n−1)! 2n

1
(bc)n

=exp 12n C
.

n=2

1 it
bc
2n 1
n
2

=1 e
− it/bc

1− it/bc
22
n

As in the case for k ] 0 quasi-particle fluctuations (5.20), it can be shown
for k=0, that the series over the subdominant contributions vanish in the
infinite volume limit.
If a=n/2 the dominating terms are both the z(zg) term in the two-

point function, and the dominating terms (for a > n/2) in all n-point
functions. The distribution becomes:

j(F(N −0))(t)=e
−t2z(z

*
)/2 1 e− i t/bc
1− i t/bc
22
n

L

5.2. k ÈNn0 { 0, 1}n Density Fluctuations

Now we turn our attention to the density fluctuations of the bare par-
ticles. The transformation to the quasi-particles (2.15) has hidden the
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influence of the external field, therefore it plays no role in the distribution
functions of the quasi-particles (Theorems 5.3 and 5.5). Its role will become
visible again in the study of the density fluctuations of the bare particles.
First we treat the fluctuations with high modulation k ¨ {0, 1}n (5.3).

Theorem 5.6. The k ¥Nn0{0, 1}n density fluctuations (5.3) are
Gaussian distributed and normal (d=0) in all phases, the distribution
functions are given by:

• in the normal and critical phases,

j(F(Nk))(t)=exp(−t2z(z)/4)

with z(z) as in (5.14), z < e−bns
2
in the normal phase, and z=e−bns

2
in the

critical phase,

• in the condensed phase,

j(F(Nk))(t)=exp (−t2/8(2z(zg)+r0 coth(bns
2/2)))

Proof.

Normal Phase. In the normal phase mL Q m < mg, we have the
following relation between a(0) and b(0):

a(0)=b(0)+Lce ifh(L)

where h(L)= h
EL(0)−mL

, an unimportant constant converging to a finite value.
The k-mode density fluctuations can be written as the sum over the k-mode
quasi-particle density fluctuations (5.4),F1=F(N

−

k) and a field fluctuationF0

FL(Nk)=L− n/2
1
2 C
p
a†(p) a(p+k)+a†(p+k) a(p)

=L− n/2 12 C
p
b†(p) b(p+k)+b†(p+k) b(p)

+Lc− n/2h(L) 12 (b
†(k) e if+b(k) e− if)

=F1+F0

In the normal phase, the fluctuations are completely dominated by the first
term (F1=F(N

−

k)), i.e.

lim
LQ.

wL(e it(F1+F0)− e itF1)=0 (5.28)
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This can be seen using the following estimates,

|wL(e it(F1+F0)− e itF1)| [ F
t

0
ds |wL(e isF1F0e i(t−s)(F1+F0))|

[ F
t

0
ds wL(e isF1F

2
0e
− isF1)1/2

using the Cauchy–Schwarz inequality in the last line. The expectation value
appearing at the rhs in the last line, can be evaluated as follows:

wL(e isF1F
2
0e
− isF1)=C

.

n=0

(is)n

n!
wL([F1, F

2
0]n)

[ C
.

n=0

|s|n

n!
|wL([F1, F

2
0]n)| (5.29)

where [F1, F
2
0]0=F

2
0 and [F1, F

2
0]n+1=[F1, [F1, F

2
0]n].

We now proceed with an estimate of this series. The first term reads

wL(F
2
0)=L

2c− nwL(b†(k) b†(k) e−2if+b†(k) b(k)+b(k) b†(k)+b(k) b(k) e2if)

=L2c− nwL(2b†(k) b(k)+1)

In order to calculate the higher order terms, remark that we need to keep
track only of the part b†(k) b(k)+b(k) b†(k)=2b†(k) b(k)+1, the other
terms in F20 and higher order commutators of them with F1 contain always
an unequal number of creation and annihilation operators. Hence, their
expectation value is zero and they can be forgotten. All contributing terms
are of the form b†(q) b(p) and commutation of such a term with F1 leads to

[F1, b†(q) b(p)]=
L− n/2

2
(b†(q+k) b(p)+b†(q−k) b(p)−b†(q) b(p+k)

−b†(q) b(p−k))

i.e., we find again (at most) 4 terms of the same structure. Using now
formula (2.18)

|wL(b†(q) b(p))| [ wL(b†(0) b(0)), -p, q ¥Nn

we can estimate the nth order term by

|wL([F1, F
2
0]n)| [ 2L

2c− n 1
2n
L−nn/24nwL(b†(0) b(0))
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yielding that the whole series is estimated by

C
.

n=0

|s|n

n!
|wL([F1, F

2
0]n)| [ L

2c− n 12 C
.

n=0

|s|n

n!
L−nn/22nwL(b†(0) b(0))+12

[ L2c− n(2wL(b†(0) b(0)) e2sL
− n/2
+1) (5.30)

The term in brackets is bounded for sufficiently large L. Since L2c− n

vanishes to zero, the whole term disappears in the thermodynamic limit.
This proves (5.28), and the distribution of the fluctuations is completely
determined by the first term. Hence the distribution of F(Nk) coincides
with the distribution of F1=F(N

−

k) (5.13),

lim
LQ.

wL(e itF(Nk))=exp(−t2z(z)/4))

with z(z) as in (5.14) and 0 < z < e−bns
2
.

Critical Phase. A similar argument as in the normal phase can be
developed in the critical phase (mL=El(0)−cL−a, with 0 < a < n/2− c and
c > 0, some unimportant constant) in order to prove that the F1=F(N

−

k)
term dominates the fluctuations.
The relation between a(0) and b(0) (2.15) depends now on the scaling

exponent a (3.9), it reads

a(0)=b(0)+
h
c
Lc+a

This yields the following expression for the density fluctuations

FL(Nk)=L− n/2
1
2 C
p
a†(p) a(p+k)+a†(p+k) a(p)

=L− n/2 12 C
p
b†(p) b(p+k)+b†(p+k) b(p)+Lc

+Lc+a− n/2
h
2c
(b†(k) e if+b(k) e− if)

=F1+F0

The F1 term outrules the F0 contribution, i.e., we prove the same formula
as (5.28) in the critical phase, consider the following estimate

|wL(e it(F1+F0)− e itF1)| [ F
t

0
ds |wL(e isF1F0e i(t−s)(F1+F0))|

[ F
t

0
ds wL(e isF1F

2
0e
− isF1)1/2
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The expectation value wL(e isF1F
2
0e
− isF1) can be expanded as

wL(e isF1F
2
0e
− isF1)=wL(F

2
0)+iswL([F1, F

2
0])

−F
s

0
ds1 F

s1

0
ds2 wL(e is2F1[F1, [F1, F

2
0]] e

− is2F1) (5.31)

The first term on the rhs of (5.31) is bounded as

wL(F
2
0)=L

a+c− n/2wL(b(k) b†(k)+b†(k) b(k))

=L2a+2c− n2
e−b(EL(k)− EL(0)+cL

−a)

1− e−b(EL(k)− EL(0)+cL
−a)
+1

and this goes to zero in the thermodynamic limit since wL(b†(k) b(k)) is
bounded if k ¨ {0, 1}n and 2a+2c− n < 0, cf. (3.9).
The second term in (5.31) is zero by gauge invariance of the states wL.

The third term in (5.31) can be estimated by a similar procedure as was
used in the normal phase estimating wL(e isF1F

2
0e
− isF1), cf. (5.29)–(5.30). The

final results is

|wL(e it(F1+F0)− e i t(F1))| [ F
t

0
ds(O(L2a+2c− n)+0+O(L2c+3a−2n) e2sL

− n/2
)1/2

Ł
LQ. 0

since 2a+2c− n < 0 and a < n. Hence, (5.28) holds also in the critical phase
and the distribution of F(Nk) coincides with the distribution of F1=F(N

−

k)
(5.13),

lim
LQ.

wL(e itF(Nk))=exp(−t2z(zg)/4))

with z(zg) as in (5.14) and zg=e−bns
2
.

Condensed Phase. In the condensed phase the relation between
a(0) and b(0) is: a(0)=b(0)+Ln/2`r0, this yields the following for the
fluctuation F(Nk)

FL(Nk)=L− n/2
1
2 C
p
a†(p) a(p+k)+a†(p+k) a(p)

=L− n/2 12 C
p
b†(p) b(p+k)+b†(p+k) b(p)

+`r0
1
2 (b

†(k) e if+b(k) e− if)

=F1+F0
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In this regime (condensed phase and k ¨ {0, 1}n), both terms are equally
contributing. The fluctuations are normal (d=0) and the variances satisfy

0 < lim
LQ.

wL(F
2
1) <.

0 < lim
LQ.

wL(F
2
0) <.

An argument as in the proof of Theorem 5.3 can be used here in order to
prove that

lim
LQ.

wL(e it(F1+F0)= lim
LQ.

wL(e itF1) lim
LQ.

wL(e itF0) (5.32)

We use the expansion of the characteristic functions in terms of truncated
correlation functions (4.6), and prove that all truncated functions vanish

wL(F1+F0, F1+F0,..., F1+F0)T [ O(La− n)

except for the two-point truncated function.

Odd Truncated Functions Vanish. First note that the one-point
truncated function vanishes. Consider then the 2n+1-point truncated
function, and suppose that all odd m-point truncated functions with
m < 2n+1 are zero. The expression for the 2n+1 truncated function reads
then:

wL(F1+F0, F1+F0,..., F1+F0)T=wL((F1+F0)2n+1) (5.33)

Use now,

F1=1L− n/2/2 C
p
b†(p) b(p+k)2+1L− n/2/2 C

p
b†(p+k) b(p)2

F0=(`r0 b
†(k) e if/2)+(`r0 b(k) e

− if/2)

(5.34)

The expansion of wL((F1+F0)2n+1) contains terms, leaving out some con-
stants, of the form

L− n(r+s)/2 C
p1,..., pr+s

wL(b†(p1) b(p1+k) · · · b†(k)) (5.35)

where we have r factors of the form b†(p) b(p+k), s factors b†(p+k) b(p),
t factors b†(k) and u factors b(k), with r, s, t, u=1, 2,..., 2n+1 and
r+s+t+u=2n+1. If we calculate the sum of the indices of the creation
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operators minus the sum of the indices of the annihilation operators, i.e.,
rk−sk+mk−nk, and if r, s, m, n=0, 1,..., 2n+1 and r+s+n+m=2n+1,
then

rk−sk+mk−nk ] 0

Since this is different from zero, it implies that the monome (5.35) vanishes.
If we decompose it into products of two-point functions, all terms contain
at least one two-point function with unequal indices for creation and
annihilation operator, which is zero, hence the whole expression vanishes.
By induction, all odd truncated functions (5.33) vanish.

All 2n-Point Truncated Functions, with 2n > 2 Vanish. Consider
first the non vanishing term, the two-point function

wL(F1+F0, F1+F0)T=wL((F1+F0)2)

=wL(F
2
1)+wL(F

2
0)

=wL(F1, F1)T+wL(F0, F0)T

where the cross-terms wL(F1F0), wL(F0F1) vanish since the number of
creation and annihilation operators is not equal in those monomes.
Now consider the 2n-point truncated function, 2n > 2, and suppose

that all 2m-point functions, with 2 < 2m < 2n are vanishing. By this
assumption we write the 2n-pont truncated function as

wL(F1+F0, F1+F0,...)T

=wL((F1+F0)2n)−c2(2n) wL(F1+F0, F1+F0)T+O(La− n)

where c2(2n)=(2n)!/(2nn!) is the number of pair-partitions of a set of 2n
elements. The first term can be expanded as follows. We use first the rela-
tion F(Nk)=F1+F0 and we write wL(F(Nk)2n) as a sum over terms with
the following structure,

wL(F1F1F0F1F0 · · · ) (5.36)

where we have 2n factors either being F0 or F1. Using simple combina-
torics, we see that we have in total 22n terms, and (2n)!/(2n−l)! l! terms
with 0 [ l [ 2n factors F0. We make now a further expansion of such an
expression using decompositions as in (5.34), we get terms consisting
of r factors with L− n/2;p b†(p) b(p+k), s factors L− n/2;q b†(q+k) b(q),
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t factors b†(k) and u factors b(k), with r, s, t, u=0, 1,..., 2n and r+s=
2n−l and t+u=l, i.e., we have terms of the form

2−2n(r0)
l/2 e if(t−u)/2L− n(2n−l)/2

× C
p1,..., pr

C
q1,..., qs

wL(b†(k) b†(k) b†(q1+k) b(q1) b†(p1) b(p1+k) · · · )

Using similar arguments as in the case of odd truncated functions, we see
that the only terms which are possibly non-zero are those where r=s=
n−l/2 and t=u=l/2. These terms can be written as a sum of terms con-
sisting of products of two-point functions. The sum runs over all pair-
partitions of the 4n−l operators in the monome. Since k ¨ {0, 1}n, such a
products of two-point functions contain at most (n−l/2)/2 diverging
factors (5.21), they are of order O(L(a/2− n)(n−l/2)) and since n > a, such a
terms are subdominant. The highest order terms are those with the highest
number of independent summation indices. The non-zero terms with the
highest number of independent summation indices have r=(2n−l)/2
summation indices left, they can be constructed if one takes combinations
of the operators b†(k) and b(k) in factors wL(b†(k) b(k)) or wL(b(k) b†(k)),
and if one combines the operators in groups with the same summation
index pi of the form b†(pi) b(pi+k) into pairs with elements from a group
of operators of the form b†(pj+k) b(pj) and vice versa. This can be done
for every group of operators since the number of groups of both types are
equal. It yields factors of the form

f+(pi)=wL(b†(pi+k) b(pj+k)) wL(b(pi) b†(pj)) d(pi−pj), or

f−(pi)=wL(b†(pi) b(pj)) wL(b(pi+k) b†(pj+k)) d(pi−pj)
(5.37)

Terms with less summation indices lead to correction terms which are at
most of order O(L− n), i.e., the highest order terms are

(L− n/2)r C
p1,..., pr

f± (p1) · · ·f± (pr) wL(b†(k) b(k)) wL(b(k) b†(k)) · · ·
(5.38)

where, depending on the order of the factors, we have more or less factors
wL(b(k) b†(k)) or wL(b†(k) b(k)), and f+(p) or f−(p) (5.37). But by
symmetry in the expansion (5.34), there are as many terms in the whole
sum starting with f+(p1) as with f−(p1) or with wL(b†(k) b(k)) and
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wL(b(k) b†(k)). This holds for all n factors, so in the end we have a number
of terms which can be written as

(L− n/2)n−l/2 C
p1,..., pn−l/2

(f+(p1)+f−(p1))/2 · · · (f+(pn−l/2)+f−(pn−l/2))/2

×((wL(b†(k) b(k))+wL(b(k) b†(k)))/2) l/2

and this is equal to

wL(F
2
1/2)

n−l/2 wL(F
2
0/2)

l/2 (5.39)

where l is an even number between zero and 2n.
How many highest order terms (5.39) are there in the expression for

wL((F1+F0)2n)? There where (2n)!/(2n−l)! l! terms with 0 [ l [ 2n fac-
tors F0, cf. (5.36), those terms can be written as (2n)!/((l/2)! (n−l/2)!)2

terms which where non zero with r=s=n−l/2 and t=u=l/2. These
terms are a sum of terms consisting of products of pair-partitions. Each
original term yields (n−l/2)! (l/2)! terms of leading order (5.38). The total
number of leading order terms amounts to (2n)!/((l/2)! (n−l/2)!) terms
of the form (5.39), i.e.

wL(F(Nk)2n)

=C
n

l=0
(2n)!/((l/2)! (n−l/2)! wL(F

2
1/2)

n−l/2 wL(F
2
0/2)

l/2+O(La− n)

=(2n)!/2nn! (wL(F
2
1)+wL(F

2
0))

n+O(La− n)

=c2(2n) wL(F(Nk)2)n+O(La− n)

Hence, the 2n-point correlation function vanishes in the thermodynamic
limit. The decomposition (5.32) is valid and the limiting distributions can
be written as,

lim
LQ.

wL(e itF(Nk))= lim
LQ.

wL(e itF1) wL(e itF0)

= lim
LQ.

wL(e itF(NŒk)) wL 1e it
`r
0

`2
F(A+k )2

=exp(− t2/8(2z(zg)+r0 coth(bns
2/2))) L

5.3. k È {0, 1}n0 {0} Density Fluctuations

We continue now with the study of the low-lying k-mode fluctuations.
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Theorem 5.7. The k ¥ {0, 1}n0{0} density fluctuations are Gaussian
and normal in the normal phase, the distribution function is given by:

j(F(Nk))(t)=exp(−t2z(z)/4), z < e−bns
2

with z(z) as in (5.14).

Proof. The same argument as in the case of the k ¥Nn0{0, 1}n density
fluctuations (Theorem 5.6) applies here. L

Theorem 5.8. In the critical and condensed phases, i.e., when mL=
EL(0)−cL−a with c > 0 and 0 < a [ n/2− c, the distribution of the
k ¥ {0, 1}n0{0} density fluctuations are different in these regions

(1) Gaussian and normal (d=0)

j(F(Nk))(t)=exp(−t2z(zg)/4)

with z(zg) as in (5.14), if a < n/2 and 3a < −2c+n,

(2) Non-Gaussian and normal (d=0)

j(F(Nk))(t)=e−t
2
z(z
*
)/4 1 1
1+( t2bc)

2
2s(k)

with s(k)=2(n−k
2), if a=n/2 and a+2c < 0,

(3) Non-Gaussian and abnormal (d=a− n/2)

j(F(Nk))(t)=1
1

1+( t2bc)
2
2s(k)

if a > n/2 and a+2c < 0,

(4) Gaussian and abnormal (d=c+3a/2− n/2)

j(F(Nk))(t)=exp 1 −t2
h2

4bc3
2

if 3a > −2c+n and a+2c > 0, this last regime includes the the condensed
phase, i.e., a=ag=n/2− c.

Proof. In the critical and condensed phase (mL=EL(0)−cL−a, 0 <
a [ ag, c > 0), the relation between a(0) and b(0) reads a(0)=b(0)+

h
c L

c+a.
This yields the following expression for F(Nk):
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FL(Nk)=L− n/2−d
1
2
C
p
a†(p) a(p+k)+a†(p+k) a(p)

=L− n/2−d
1
2
C
p
b†(p) b(p+k)+b†(p+k) b(p)

+Lc+a− n/2−d
h
2c
(b†(k) e if+b(k) e− if)

=F1+F0 (5.40)

Note that in the condensed phase (a=ag), we can express F0 as a function
of the condensate density, i.e., we can substitute `r0 for h/c.
We have to make a distinction between different regions in param-

eterspace (1)–(4), cf. (Fig. 4).

Region (1). a < n/2 and 3a < −2c+n

In this region the F1 term (5.40) dominates and the fluctuations can be
scaled normally, i.e., d=0. The proof is obtained by similar arguments as
in Theorem 5.6 for the case of the normal and critical phases, we have the
estimate

|wL(e it(F1+F0)− e itF1)| [ F
t

0
ds |wL(e isF1F0e i(t−s)(F1+F0))|

[ F
t

0
ds wL(e isF1F

2
0e
− isF1)1/2

Fig. 4. Representation of different regions in the (a, c)-parameterspace.
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The expectation value on the rhs, can be evaluated as follows

wL(e isF1F
2
0e
− isF1)=C

.

n=0

(is)n

n!
wL([F1, F

2
0]n)

[ C
.

n=0

|s|n

n!
|wL([F1, F

2
0]n)| (5.41)

The last terms of the series are now estimated as before, using the following
estimate for the nth order term (see (5.30))

|wL([F1, F
2
0]n)| [ h

2/2c2L2c− n+2a2nL−nn/2wL(b†(0) b(0)) (5.42)

The series is bounded by

C
.

n=0

|s|n

n!
|wL([F1, F

2
0]n)|

[ L2c− n+2ah2/4c2 12 C
.

n=0

|s|n

n!
L−nn/22nwL(b†(0) b(0))+12

[ L2c− n+2ah2/4c2(2wL(b†(0) b(0)) e2sL
− n/2
+1)

[ O(L2c− n+3ae2L
− n/2
) (5.43)

Since in region (1) 3a+2c− n < 0, the expectation value wL(e isF1F
2
0e
− isF1) is

vanishing. Hence, the density fluctuations are completely determined by the
first term F1=F(N

−

k) or:

lim
LQ.

wL(e itF(Nk)− e itF(NŒk))=0 (5.44)

yielding j(F(Nk))(t)=j(F(N
−

k))(t), cf. (5.13).

Region (2)–(3). a \ n/2 and a+2c < 0
As in region (1), the F1 term dominates the F0 term in (5.40), the same

argument as used in region (1) can be used here to prove the equality
(5.44), the only difference being that other scaling exponents compared to
expression (5.42) do appear, i.e.

|wL([F1, F
2
0]n)| [ h

2/2c2L2c2nL−nawL(b†(0) b(0))

substituting these exponents in (5.43) yields

C
.

n=0

|s|n

n!
|wL([F1, F

2
0]n)| [ O(L

2c+ae2L
−a
)
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Since a+2c < 0 in these regions, this term vanishes in the thermodynamic
limit. Hence, also in regions (2)–(3) we have that

j(F(Nk))(t)=j(F(N
−

k))(t)

and the distribution j(F(N −k)) is given by (5.15) if a=n/2, (region 2) or by
(5.16) if a > n/2 (region 3).

Region (4). 3a > −2c+n and a+2c > 0

In this region the F0 term in (5.40) dominates. The variances of F0 are
finite, if the scaling exponent is chosen as d=c+3a/2− n/2, while the
variance of the first term then vanishes. The distribution is completely
dominated by the second term, i.e.:

lim
LQ.

|wL(e it(F1+F0)− e it(F0))|=0

This is proved using similar bounds as before:

|wL(e it(F1+F0)− e itF0)| [ F
t

0
ds |wL(e isF0F1e i(t−s)(F1+F0))|

[ F
t

0
ds wL(e isF0F

2
1e
− isF0)1/2

The expectation value appearing is again expanded as:

wL(e isF0F
2
1e
− isF0)=C

.

n=0

(is)n

n!
wL([F0, F

2
1]n)

An easy calculation learns that this series is cut off after the third term,

wL(e isF0F
2
1e
− isF0)=wL(F

2
1)+wL([F0, F

2
1])+wL([F0, [F0, F

2
1]]) (5.45)

The first term reads

wL(F
2
1)=L

−n−2dC
p
wL(b†(p) b(p))+2wL(b†(p) b(p)) wL(b†(p+k) b(p+k))

+wL(b†(p+k) b(p+k))

=L−2c−3a C
p ¥ {0, 1}n

+·· ·+L−2c−3a C
p ¨ {0, 1}n

· · ·
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The terms in the sum over p ¥ {0, 1}n are at most of order

wL(b†(p) b(p)) wL(b†(p+k) b(p+k))=O(L2a)

and since 2c+3a > 2a in region (4), they are vanishing; the second term is a
Riemann sum converging to a finite integral,

lim
LQ.

L− n C
p ¨ {0, 1}n

...=z(zg)

with z(zg) as in (5.14). The scaling exponent satisfies n−2c−3a > 0 in
region (4), therefore this term vanishes in the thermodynamic limit as well.
The second term in (5.45) is zero because the constituents are expecta-

tion values of monomes with an unequal number of creation and annihilation
operators

iwL([F0, F
2
1])=iwL(F1[F0, F1]+[F0, F1] F1)

=
h
2c
L− c−2awL(iF1(b(2k) e− if−b†(2k) e if

+b(0) e− if−b†(0) e if)+h.c.)

=0

The third term of (5.45) reads

wL([F0, [F0, F
2
1]])=wL(2[F0, F1]

2+F1[F0, [F0, F1]]+[F0, [F0, F1]] F1)

The expectation values of the second and third term in this expression
vanish since [F0, [F0, F1]]=0, the first term is expanded as

wL([F0, F1]2)=−L−4a−2c
h2

4c2
(wL(b†(0) b(0))+1+wL(b†(2k) b(2k)))

[ O(L−3a−2c)

and tend to zero in region (4).
The higher order terms in (5.45) vanish since they all contain the

factors [F0, [F0, F1]]=0. Hence the distribution of these density fluctua-
tions coincides with the distribution of the field fluctuations, i.e., F0=
h
`2 c
F(A+k ) cf. (4.10),

j(F(Nk))(t)= lim
LQ.

wL(e itF(Nk))= lim
LQ.

wL 1e
ith

`2 c
F(A+k )2=exp 1 −t2 h

2

4bc3
2 L
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5.4. Unmodulated (k=0) Density Fluctuations

Theorem 5.9. The limiting distributions of the k=0 density
fluctuations (5.1) are

• Gaussian and normal

j(F(N0))(t)=exp(−t2z(z)/2)

with z(z) as in (5.14), in the normal phase and in the critical or condensed
phases (with mL=EL(0)−cL−a) if a < n/2 and if 2c+3a < n.

• Non-Gaussian and normal

j(F(N0))(t)=e−t
2
z(z
*
)/2 1 e− it/bc
1− i t/bc
22
n

with z(zg) as in (5.14), in the critical phase if a=n/2 and c < − n/4,

• Non-Gaussian and abnormal (d=a− n/2)

j(F(N0))(t)=1
e− it/bc

1− it/bc
22
n

in the critical phase if a > n/2 and a < −2c.

• Gaussian and abnormal (d=c+3a/2− n/2)

j(F(N0))(t)=exp 1 −t2
h2

4bc3
2

in the critical or condensed phase if a > −2c and a > n/3−2c/3. In the
condensed phase, i.e., if a=ag=n/2− c, this function can be written in
terms of the condensate density r0, i.e., substitute r

3/2
0 /bh for h

2/bc3.

Proof. The proof goes along the same lines as the proofs of Theorems
5.7 and 5.8. L

6. CONCLUDING REMARKS

Clearly our key contribution consists in the rigorous analysis of the
field and density fluctuations in the Bose gas with attractive boundary
conditions. Explicit distribution functions of the fluctuations are computed
which are as well of the Gaussian or the non-Gaussian type, of the normal
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as well of the abnormal type. These results, clearly indicate the influence on
the details of the boundary conditions, like the external field (2.13), the
elasticity of the boundaries (2.2)–(2.3), and the volume dependence of
the chemical potentials (3.8).
In the technique to study the thermodynamic limit we adopt here, the

interplay between the scaling of the external field (2.13) and the conver-
gence rate of the chemical potentials (3.8) determines the limiting thermo-
dynamic phase. This interplay also determines the distribution and the
scaling of the field and density fluctuations. For the field fluctuations
(Theorem 4.2) and for high-modulated density fluctuations (Theorem 5.6),
the structure is determined by the division between normal, critical and
condensed phases. For low-modulated and unmodulated density fluctua-
tions (Theorems 5.8 and 5.9), different regions appear in the critical phase
where these density fluctuations have different scaling laws and distribution
functions (cf. Fig. 4). Hence, the study of the Bose gas with external field,
cannot be confined to Dirichlet boundary conditions or a c=0 scaling of
the external field. As our explicit calculations demonstrate, going beyond
these limitations reveals an unexpected richness in the fluctuation distribu-
tions. This suggests that a choice of a particular strength of the external
field should be well motivated on physical grounds.
The results about the (unmodulated) density fluctuations can be

compared with previously obtained results. (8) There is a correspondence on
a heuristic level in the sense that density fluctuations are Gaussian and
normal in the normal phase, non-Gaussian and abnormal in (part of )
the critical phase and Gaussian but abnormal in the condensed phase,
and the form of the explicitly obtained non-Gaussian distribution (5.26) is
of the same structure as the ones calculated by Angelescu et. al. in ref. 8.
But the scaling exponents they calculated are different. They found, in
three dimensions respectively d=0, 0.5, 3.5 for the normal, critical and
condensed phases, whereas we found respectively d=0, d ¥ [0, 1.5), and
d ¥ (0, 1.5), indicating that a difference in the boundary conditions changes
the scaling behaviour as well. Furthermore, we found that density fluctua-
tions can also be Gaussian or normal or both in the critical regime,
depending on different choices of parameters. Sufficiently strongly modu-
lated fluctuations, i.e., if k ¨ {0, 1}n are always Gaussian and normal, con-
firming that there is a substantial Gaussian element even at or below the
critical point, cf. the discussion about the classical Curie–Weiss model in
refs. 17 and 13.
The explicit form of the distribution functions can be obtained because

of the quasi-free character of the equilibrium states. This model is original
in the sense that the spectrum shows an energy gap in the case of attractive
boundary conditions. Previous explicit studies of fluctuations where only
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performed in the case of spectra without an energy-gap. (1–10) One would
also like to know whether such changes in boundary conditions are as
important in models for interacting Bose gases.
Finally, we want to remark that there are more open problems to be

studied in this model. In particular we considered here a special thermo-
dynamic limit using a power low dependence of the chemical potential on
the volume, yielding explicit dependence of the critical exponents on this
power law. An other natural way of taking the thermodynamic limit is a
limit by taking the density constant. It is a question whether in this case the
different distribution functions can be computed explicitly and whether
their behaviour is analogous. Our experience by now is that properties of
fluctuations are very dependent on the type of thermodynamic limit taken.
This problem is related to the question about the equivalence of ensembles
for the free gas with a finite gap in the energy spectrum, this is currently
under investigation, and hopefully sheds new light on this problem.
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